给出了Poisson方程的非协调高次Wilson有限元方法的收敛性分析,并得到最优误差估计,同时通过数值算例验证了理论分析的正确性.
This paper presents an analysis of the convergence of the nonconforming higher order Wilson finite element method for Poisson problem,and obtains the optimal order error estimates.At the same time,numerical results are also given to verify our theoretical analysis and to show the good performance of the element.