将一个低阶Crouzeix—Raviart型非协调三角形元应用到一类非线性抛物方程,并建立了质量集中的半离散和向后Euler全离散逼近格式,在一般各向异性网格上利用插值算子导出了L2-模的最优误差估计.
A low order Crouzeix-Raviart type nonconforming triangular element is applied to a class of nonlinear parabolic equations in this paper, a lumped mass nonconforming finite element with Backward Euler approximation scheme is proposed, the L2-norm error estimate is derived on the general anisotropic meshes by the finite element interpolation.