利用单元插值的性质、平均值及导数转移技巧,将Crouzeix-Raviart型非协调线性三角形元应用到双曲积分微分方程,建立了1个新的混合元格式,得到了相应的H1-模及L2-模最优误差估计.
By utilizing the properties of the interpolation on the element,mean-value and derivative delivery techniques,a Crouzeix-Raviart type nonconforming linear triangular finite element is applied to the hyperbolic type integro-differential equations and a new mixed element formulation is established.The optimal error estimates in H1-norm and in L2-norm are obtained.