位置:成果数据库 > 期刊 > 期刊详情页
拟线性抛物问题的非协调H^1-Galerkin扩展混合有限元方法
  • ISSN号:1005-3085
  • 期刊名称:《工程数学学报》
  • 时间:0
  • 分类:O242.21[理学—计算数学;理学—数学]
  • 作者机构:[1]郑州大学数学系,郑州450052, [2]郑州师范学院数学系,郑州450044, [3]河南财经政法大学数学与信息科学系,郑州450002
  • 相关基金:国家自然科学基金(10671184;10971203).
中文摘要:

抛物方程在热的传导、溶质的弥散以及多孔介质的渗流等问题中有着广泛的应用.本文综合H^1-Galerkin混合有限元方法与扩展混合有限元方法的优点,针对一类拟线性抛物问题,提出了在半离散和向后的Euler全离散格式下非协调的H^1-Galerkin扩展混合有限元方法.该方法利用真解的插值,不需要利用投影,从而得到有限元解的存在唯一性和格式的稳定性,以及和以往协调元相同的误差估计.

英文摘要:

The parabolic partial differential equations have wide range of applications in the heat transmission, the solute dissemination, porous media seepage and so on. In this paper, the nonconforming Galerkin expanded finite element method for a class of quasi-linear partial dif- ferential equations is proposed both for semi-discrete and back-ward Euler full discrete schemes by applying the advantages of Galerkin mixed finite element method and expanded finite ele- ment method. The same error estimates as the conforming case in the previous literature, the existence and uniqueness of the finite element solutions and the stability of the schemes are obtained by means of the interpolation of the true solutions instead of projections.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程数学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:西安交通大学
  • 主编:李大潜
  • 地址:西宁市咸宁西路28号西安交通大学数学与统计学院
  • 邮编:710049
  • 邮箱:jgsx@mail.xjtu.edu.cn
  • 电话:029-82667877
  • 国际标准刊号:ISSN:1005-3085
  • 国内统一刊号:ISSN:61-1269/O1
  • 邮发代号:
  • 获奖情况:
  • 《中文核心期刊要目总览》核心期刊,《中国科学引文数据库》核心期刊,《中国数学文摘》核心期刊,陕西省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:6741