研究对流扩散方程的流线扩散法的最小二乘非协调有限元逼近格式,利用单元的特殊性质,证明离散格式解的存在惟一性,得到位移H’-模和应力H(div)-模的最优误差估计。
Least-squares nonconforming finite element approximation scheme of the streamline diffusion methods for convection-diffusion equations is introduced. By use of the interpolation on the element, the existence and unique- ness of the approximate solutions are proved. The optimal error estimates for the displacement in broken H1 -norm and the stress in H(div)-norm are derived.