讨论一类抛物积分微分方程带约束的旋转Q1非协调元方法.在摆脱传统的Ritz-Volterra投影,也不需要修正格式前提下,利用Bramble-Hilbert引理和单元的特殊性质,得到了与以往协调元完全相同超逼近性结果.
In this paper,supercolseness analysis of the constrained rotated Q1 nonconforming element for a kind parabolic integro-differential equation is discussed.By use of Bramble-Hilbert lemma and the special properties of the element,the supercolseness is derived without Ritz-Volterra projection and modification formulution,which is the same as the previous conforming finite elements.