半导体光催化氧化技术作为一种"绿色技术",被广泛应用于环境污染物治理和太阳能转化领域.高效、稳定、可回收利用的催化剂的开发是光催化技术发展的一个重要方向.Ag系半导体光催化剂因在可见光分解水制氢及降解有机污染物等方面表现出优异的催化性能而广受关注.然而,该催化剂失活快制约了其应用.因此,提高Ag系半导体材料的光催化稳定性成为近年来研究的一个热点.研究发现,在半导体的表面或者界面形成p–n异质结是提高催化剂光催化性能和稳定性的有效途径.理论上讲,当p型半导体和n型半导体形成p–n结以后,在两种半导体接触边缘的附近处存在着正、负空间电荷分列两边的偶极层,产生了从n型半导体指向p型半导体的内建电场.内建电场的存在使得p型半导体与n型半导体之间产生了电位差,即内建电势差.这种电势差能够有效促进电子和空穴的分离,达到光生电子和空穴对分离、转移和传递的目的,从而抑制电子和空穴的复合,提高光催化效率.Ag2CO3是p型半导体,其导带为0.21 e V,价带为2.83 e V;Ag3PO4是n型半导体,其导带为0.43 e V,价带为2.86 e V.两者能带结构匹配,能形成p–n异质结.因此,本文采用简单的共沉淀法,制备了不同比例的Ag3PO4/Ag2CO3复合光催化剂,并通过X射线衍射、透射电镜、X射线光电子能谱、紫外-可见漫反射光谱以及瞬态光电压谱等对其进行了表征.透射电镜照片显示,粒径较小的Ag3PO4颗粒均匀的分布在粒径较大的Ag2CO3周围.P元素和C元素的摩尔比接近于投料比.Ag3PO4/Ag2CO3复合催化剂的吸收光谱体现出两种催化剂的混合特征,在可见光区的吸收强度增加.瞬态光电压表征不仅证实了Ag2CO3是p型半导体,Ag3PO4是n型半导体,更说明了40%-Ag3PO4/Ag2CO3复合光催化剂的载流子寿命较长.罗丹明B(Rh B)的降解实验证实40%-Ag3PO4/Ag2CO3(Ag3PO4与Ag2CO3的摩尔?
Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to the difference of the electric potential in the inner electric field near the junction,pointing from n toward p. n-Ag3PO4/p-Ag2CO3 p–n heterojunction composites are prepared through a facile coprecipitation process. The obtained Ag3PO4/Ag2CO3 p–n heterojunctions exhibit excellent photocatalytic performance in the removal of rhodamine B(RhB) compared with Ag3PO4 and Ag2CO3. The 40%-Ag3PO4/Ag2CO3 composite photocatalyst(40 mol% Ag3PO4 and 60 mol% Ag2CO3) exhibits the best photocatalytic activity under visible light,demonstrating the ability to completely degrade RhB within 15 min. Transient photovoltage characterization and an active species trapping experiment further indicate that the formation of a p–n heterojunction structure can greatly enhance the separation efficiency of photogenerated carriers and produce more free h+active species,which is the predominant contributor for RhB removal.